
 1

Performance Evaluation of Parallel Garbage Collectors in the
Jalapeño Virtual Machine

Neha Mittal, Keshava P Subramanya, Chandra Krintz

University of California at Santa Barbara

{ nehamittal, keshava, ckrintz } @ cs.ucsb.edu

Abstract – As multi-core systems
become ubiquitous, parallel computing
is the new big thing today. As more and
more software systems are designed to
take advantage of this capability, the
need for the JVM to support and
efficiently handle Parallel Garbage
collection becomes more relevant than
ever before. In this paper, we present a
detailed performance analysis of various
Parallel Garbage Collection techniques
in the Jalapeño Virtual Machine. We
deployed and analyzed the merits and
demerits of several popular garbage
collection algorithms under single and
multicore platforms.

Categories and Subject Descriptors

D.3.4 [Programming Languages]
Processors, Garbage Collection

C.4. [Performance of Systems]
Performance attributes

General Terms

Parallel, Garbage Collection, Analysis,
Design, Memory Management, JVM

Keywords

JikesRVM, Parallel Garbage Collection,
Dual Core, Ubuntu

1. Introduction

Garbage collection (GC) is one of the
most important and complex parts of the
runtime system of programming
languages. Parallel collectors take an
orthogonal approach to the problem of
reducing collection pause time. Rather
than decreasing the total amount of work
performed during a particular collection
as generational collectors do, parallel
collectors merely mitigate the effect of
this work by running in parallel with the
mutator (client). While a parallel
collector still imposes some overhead
cost on the system, it eliminates the long
pause times associated with stop-the-
world collection

We take four popular current day
Garbage collection techniques namely –
Generational Mark and Sweep (GenMS),
Generational Copying (GenCopy), Copy
Mark and Sweep (CopyMS) and Mark
and Sweep (MS). IBM’s JikesRVM
installed on x86 with multi-core support
forms our platform for deploying the
above mentioned GC techniques.
SPECJBB2005 was used as the server
benchmark as load onto the JVM.

Our analysis revolves around three
important parameters
- Throughput (in the context of
SpecJBB2005 benchmark)
- Total GC time
- Mutator pause time

 2

2. Experimental Setup

The tests were run almost exclusively on
Ubuntu Linux 6.06 with SMP enabled
on Intel(R) Core(TM)2 CPU T5500 @
1.66GHz. The total available physical
memory was 1GB. The JikesRVM was
used with various Garbage Collection
Algorithms using the FastAdaptive
Compiler. The latest SPECJBB2005 was
the benchmark that was run. For all the
experiments, we used a common
workload of 8 warehouses which took
four minutes per run.

3. Garbage Collectors in Java

This chapter presents a brief overview of
the parallel garbage collectors that we
studied and analyzed.

3.1 Mark and Sweep (MS)

Figure 1: GC memory behavior for the Mark and
Sweep

Mark-Sweep (MS) garbage collector
traverses the entire object reachability
graph. Each object is marked when it is
scanned during the search, and
unmarked objects are known to be
garbage. Here is the algorithm.

for each root variable r
 mark (r);
sweep ();

Figure 1 shows the amount of memory
live objects consumed following each
GC, as well as the amount of memory
freed when dead objects were reclaimed.
The cost of this collector is proportional
to the size of heap. Once the application
ramps up, nearly equal memory is freed
at each run of the GC.

3.2 Generational Mark and Sweep
(GenMS)

It has been empirically observed that in
many programs, the most recently
created objects are also those most likely
to quickly become unreachable (known
as infant mortality or the generational
hypothesis). A generational GC divides
objects into generations and runs more
frequently on the younger generations
than on the older ones.

Figure 2: GC memory behavior for the Generational
Mark and Sweep

Furthermore, the runtime system
maintains knowledge of when references
cross generations by observing the
creation and overwriting of references
(Remembered Set). When the garbage
collector runs, it may be able to use this
knowledge to prove that some objects in
the nursery set are unreachable without
having to traverse the entire reference
tree. If the generational hypothesis
holds, this results in much faster
collection cycles while still reclaiming
most unreachable objects. In a

 3

generational Mark-Sweep Algorithm, the
Mark-Sweep algorithm is used in both
the nursery and the mature area. Since
the collection runs on the whole heap
occasionally and results in reclaiming
large number of objects at once, the GC
memory behavior is a Saw-tooth graph
as shown in the figure-3.

3.3 Copy Mark and Sweep (CopyMS)

CopyMS uses two memory regions. New
objects are allocated sequentially into
the first region, which is a copying
space. When the region is filled,
reachable objects are copied into the
second space, which is managed using
Mark-Sweep. No write barrier is present,
and every collection is performed over
the whole heap

Figure 3: GC memory behavior for the Copy Mark

and Sweep

Due to the collection being performed on
the whole heap every time, the saw-tooth
effect seen in the Generational GC
techniques is not visible in the CopyMS.

3.4 Generational Copying (GenCopy)

GenCopy is a generational scheme in
which both the mature and nursery space
is managed with a standard Copy
approach. Objects are allocated in the
nursery until its current semispace is
full.

Figure 4: GC memory behavior for the Generational

Copying

Then, only the nursery is collected,
copying its live data into the other
semispace. If an object survives long
enough to be considered old, it can be
copied out of the nursery and into the
mature space. Eventually, the mature
space will be filled up and the whole
heap will be collected then. As the GC is
invoked on the whole heap when a
certain level threshold is reached, the
used heap before very GC collection
appears to be nearly a constant.

Figure 5: GC memory behavior for the Generational

Copying (detailed)

Whole heap collection is done only if the
nursery size falls below a static
threshold. As this run was obtained on a
500MB total heap size, we can see that a
collection is run when the static
threshold (of nearly half the size of
provided heap size ~ 250MB) is reached.

 4

Figure 6: Throughput of MP GC techniques Figure 7: Throughput of SP GC techniques

4. Analysis of Parallel GC
techniques

We now take a look at the following
properties of the GC techniques on
Single Processor (SP) and Multi
Processor (MP) machines.

- Throughput: This metric is from the
SPECJBB2005 benchmark and
represents the number of operations per
second (bops) that can be performed in a
fixed amount of time, typically four
minutes.

- Total GC time: Total time taken by the
collector during Garbage Collection.

- Pause times: This represents the
individual GC Collection times, during
which the mutator is typically stopped.

4.1 Throughput Analysis

One quick observation one could make
is about the throughput nearly doubling
in the MP case. One could be tempted to
attribute this to the Parallel Garbage
collection. On the contrary, we find that
it is one of the less important factors that
contribute to this effect. The MultiCore
version of the runs had availability of

more computing power and access to
true parallelism was nearly double that
of the uniprocessor case.

GC MS GenCopy CopyMS GenMS
Growth 48% 68.9% 70.2% 53%

Table 1: Growth in throughput
(avgMP-avg SP) / avg SP

GC MS GenCopy CopyMS GenMS
Growth 54.8% 40.5% 45.06% 49.8%

Table 2: Growth in number of collections

One important observation to be made
from Table 1 and Table 2 is that, thought
the trends (relative ordering) of
throughput of GC techniques are nearly
the same, the difference in relative
growths of each collector.

The analysis is further clouded by the
fact that there are too many unknowns as
the number of garbage collector runs
also varies widely.

4.2 Total GC times

In our experience, the total GC time was
nearly the same for both SP and MP
runs. This could probably be accounted
for the fixed time runs of the
SPECJBB2005 benchmark. One striking

 5

Figure 8: Total GC time in MP System Figure 9: Total GC time in SP System

Figure 10: Pause time in MP System Figure11: Pause time in SP System

observation is that the total number of
GC runs has increased, by nearly 50%
(as in Table 2) in some cases, but the
total GC time appears to be fixed. Figure
8 has the total GC time of the MP GC
collectors.

4.3 Pause Time

We observe from Figure 10, 11 that the
general trends are nearly the same for
MP and SP systems, however, the graphs
are smoother in the SP system. This
could be accounted for the asynchronous
Parallel GC collection that happens in
the MP systems.

Therefore, we can say that parallel
system can prove to be beneficial for the
interactive applications, wherein the
mutator is paused for less time and gives

better throughout due to availability of
parallel computing units.

Figure12: Pause time in MP System for GenMS

and GenCopy collectors(detailed)

Fig 12 shows the pause times for the
GenMS and GenCopy collectors on the
multiprocessors system. The GenCopy
collector seems to have the smallest
mutator pause time. We observed that
the generational collector’s pause time is
much lesser than that of MS and

 6

CopyMS. This could be accounted to its
inherent design of performing frequent
collection on small nursery size.

4.4 Summary of Observations

GenMS and GenCopy displayed some
remarkable qualities. As seen from table
3, they had relatively low pause times
and high throughput compared to MS
and CopyMS. Under memory systems
such as server environments, where most
jobs are non interactive jobs, GenCopy
may be the most suitable. However,
GenCopy crashed under low memory
conditions.

This could be attributed to the
SemiSpace Strategy of Copying
collectors which makes them unsuitable
in low memory devices. GenMS, the real
hero of the day, had nearly the same
throughput as GenCopy, but had best,
nearly constant total GC time and Pause
time, even under low memory
constraints. Unlike GenCopy, it had no
spikes in the pause times and hence,
works best even for realtime and
interactive jobs.

 5. Related work and Conclusion

A similar study of Parallel was
conducted by Attanasio et al. In our
work, we were able to verify some of the
results in that paper. However, in some
of the experiments, we have some
conflicting results. This could be
attributed to the fact that the experiments
conducted on different benchmarks. As
GC technique performance vary greatly
based on mutator memory behavior.

Our observations can be summarized by
the table below. Both GenMS and
GenCopy work well. But GenCopy has
issues with memory constrained systems

and has a few but high pause times. This
makes the GenMS the ideal choice of in
case of interactive and real time
applications

GC Throughput TotalGC Pause Overall

GenMS good best best Best

GenCopy best good good Good

MS average average poor Average

CopyMS poor poor average Poor

Table 3: Ranks of Parallel Garbage Collectors running

SPECJBB2005

6. References

[1] PAUL R. WILSON "Uniprocessor
Garbage Collection techniques In ACM
computing surveys

[2] LUKE DYKSTRA, WITAWAS
SRISA-AN, J. MORRIS CHAN "An
Analysis of the Garbage Collection
Performance in Sun's HotSpotTM Java
Virtual Machine"

[3] B. ALPERN, C. R. ATTANASIO, J. J.
BARTON, M. G. BURKE et al "The
Jalapeno Virtual Machine"

[4] STEVE BLACKBURN ROBIN
GARNER DANIEL FRAMPTON "MMTk:
The Memory Management Toolkit"

[5] A very interesting article about GC
http://www.javaworld.com/javaworld/jw-08-
1996/jw-08-gc.html

[6] Tuning Garbage Collection with the
1.4.2 Java[tm] Virtual Machine
http://java.sun.com/docs/hotspot/gc1.4.2/

[7] The GC page
http://www.cs.kent.ac.uk/people/staff/rej/gc.
html

[8] An article about tuning of GC
http://www-
128.ibm.com/developerworks/library/j-
jtp01274.htm

 7

Project Self Assessment

This project helped us get in depth
understanding of Parallel Garbage
Collection Strategies, their trade-offs,
memory behaviors. Also, the project
helped us understand the complex
system of JikesRVM. We were able to
contribute to the Ubuntu Dapper
Community, some tips on how to run
JikesRVM easily by enumerating the
common pitfalls and issues based on our
own experiences in the project.

Furthermore, this project helps us
understand the value of discipline in
project planning and execution which is
evident from the shared document
(googledocs).

For the above reasons, we strongly
believe that we deserve the top grade for
the project which is 1

Appendix

1. Enabling Multi-core support on
Ubuntu - Dapper

 * This should work for both Multicore
systems and SMP systems

sudo apt-get install linux-686-smp

 * This command will upgrade the kernel with
SMP support. The default kernel does not
support SMP or Multicores.

 * You can check that this works by running
the following and seeing two CPUs listed

cat /proc/cpuinfo

2. Enabling Virtual Machine Support
in JikesRVM

Modifying file config/i686-pc-linux-gnu to add
the following changes

 RVM_FOR_SINGLE_VIRTUAL_PROCESSOR
to 0

Rebuilding RVM to incorporate these changes.

3. Compiling with the right version of
Java
The 1.5 Version is required for compiling some
parts of the JVM. Find out which version your
/usr/bin/java is pointing to by

ls –l /usr/bin/java.

Follow the soft links to check if it is pointing to
the right binary.

4. Running JikesRVM to use all
processors

The RVM has to be invoked with

–X:processors=all

to instruct the RVM to use all the
cores/processors in the system. If this option is
not used, it will use the first available
core/processor eben in SMP environment.

5. Checking to see if one GC thread is
running per processor/core

The RVM has to be invoked with

-verbose:gc:8

The o/p should look something like this

SimplePhase.delegatePhase simple
[C] phase start-closure
SimplePhase.delegatePhase simple
[C] phase start-closure
 per-collector...
 per-collector...
Proc 1: Working on GC in
parallel
Proc 2: Working on GC in
parallel

