
A Comparison of Parallel Languages for the Implementation Of The
Kth Selection Algorithm

Neha Mittal, Roopa Kannan, Keshava P Subramanya
{nehamittal, roopa.kannan, keshava}@cs.ucsb.edu

Abstract

In this paper we present an evaluation of
four contemporary parallel languages:
Unified Parallel C (UPC), Message Passing
Interface (MPI), STAR-P and Titanium for
the Kth selection problem[1]. UPC and MPI
are programming languages based on ANSI
C standard whereas Titanium is based on
Java and STAR-P is based on Matlab.

We consider different parameters for
evaluating these languages for the current
problem ranging from ease of use to
abstraction to performance. We deconstruct
each parallel language into its basic
components, show examples, make a
detailed analysis, compare them, and finally
draw some conclusions.

We find MPI to be the most easy to use with
the best documentation around and also to
debug. The performance of MPI ,UPC and
STAR-P are nearly comparable with some
performing better under certain conditions.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: Parallel
programming
D.3.3 [Language Constructs and Features]:
Dynamic storage management

General Terms
Performance, Experimentation, Evaluation,
Parallelism

Keywords

UPC, MPI, Star P, Titanium Kth Selection
problem,

1. Introduction

With the advent of multi-core systems, the
interest in parallelism and parallel languages
is higher now than ever before. A plethora
of parallel languages are out there and it
could seem to be a daunting task for one to
choose between these languages to solve
parallel problems. We make a humble
attempt to compare four popular
contemporary parallel languages, namely,
UPC, MPI, Star P and Titanium. These four
languages vary widely in their programming
models and memory abstraction.

We start out with a problem that we consider
as a representative of a typical problem that
could exploit most of the abstractions of
most of these above specified languages and
can thus, keep our evaluation fair and
reasonable. To achive this objective, we
choose the Kth Selection Problem which is
the core of the Parallel Sorting (PSort)
algorithm. This PSort is in turn the core of
many day-to-day parallel problems.

We consider the following parameters to
assess various facets of above specified
parallel languages based on our experiences:

- Ease of installation and deployment
- Ease of understanding and availability of
 help
- Ease of creation of parallel data structures
- Ease of error detection and debugging

In chapter 2, we describe the parallel
languages being considered. Chapter 3
discusses the algorithm for the Single
Selection problem. This is followed by a
detailed experimental setup in the chapter
4.Chapter 5 presents the various parameters
used to compare the languages. Finally, we
showcase the performance results and

perform a comparative analysis of parallel
languages being considered.

2. Description of Parallel Languages

Here we describe the four parallel languages
being considered followed by some
examples to illustrate their key features.

2.1. Unified Parallel C

As described by the Unified Parallel C
(UPC) community[2], it is a parallel
extension of the C programming language
designed for high-performance computing
on large-scale parallel machines, including
those with a common global address space
(SMP and NUMA) and those with
distributed memory (e.g. clusters). There
exists a single shared, partitioned address
space, where variables may be directly read
and written by any processor, but each
variable is physically associated with a
single processor. UPC uses a Single
Program Multiple Data (SPMD) model of
computation in which the amount of
parallelism is fixed at program startup time,
typically with a single thread of execution
per processor.

In this programming paradigm, every thread
runs the same program but keeps its own
private local data [4]. Each thread has a
unique integer identity expressed as the
MYTHREAD variable. The THREADS
variable represents the total number of
threads used by the application. These two
variables are predefined identifiers. In
addition to each thread’s private address
space, UPC provides a shared memory area
to facilitate communication among threads,
and one can declare a shared object by
specifying the shared type qualifier. While a
private object may only be accessed by its
owner thread, all threads can read or write to
data in the shared address space. Because
the shared memory space is logically
divided among all threads, from a thread’s
perspective the shared space can be further
divided into a local shared memory and

remote one. Data located in a thread’s local
shared space are said to have affinity with
the thread, and compilers can utilize this
affinity information to exploit data locality
in applications to reduce communication
overhead.

Pointers in UPC can be classified based on
the locations of the pointers and of the
objects to which they point [7]. Accesses to
the private area behave identically to regular
C pointer operations, while accesses to
shared data are made through a special
pointer-to-shared construct. The speed of
local shared memory accesses will be lower
than that of private accesses due to the extra
overhead of determining affinity, and remote
accesses in turn are typically significantly
slower because of the network overhead.
There are three different kinds of UPC
pointers: private pointers pointing to objects
in the thread’s own private space, private
pointers pointing to the shared address space,
and pointers living in shared space that also
point to shared objects.

Data Distribution. UPC gives the user
direct control over data placement through
local memory allocation and distributed
arrays [2]. When declaring a shared array,
programmers can specify a block size in
addition to the dimension and element type.
The system uses this value to distribute the
array elements block by block in a round-
robin fashion over all threads. For example,
a declaration of shared [4] int array[10]
means that the compiler should allocate the
first four elements of the array on thread 0,
the next two on thread 1, and so on.
If the block size is omitted the value defaults
to one (cyclic layout), while a layout of []
or [0] indicates indefinite block size, i.e.,
that the entire array should be allocated on a
single thread

.

Figure 1: High level system diagram [16]

Figure 1 shows the high-level system
diagram for a UPC application compiled
using the Berkeley UPC compiler [16]. This
is the UPC compiler being used during the
entire course of experimentation. The
generated C code runs on top of the UPC
runtime system, which provides platform
independence and implements language-
specific features such as shared memory
allocation and shared pointer manipulation.
The runtime system implements remote
operations by calling the GASNet
communication interface, which provides
hardware-independent lightweight, uniform
networking primitives.

2.2. MPI

Message Passing Interface (MPI) [8] is a
specification of message passing libraries.
The goal of MPI is to provide a widely used
standard for writing message passing
programs. The interface attempts to be
practical, portable, efficient and flexible.
Interface specifications have been defined
for C/C++ and Fortran programs.

Programming Model: MPI lends itself to
virtually any distributed memory parallel
programming model. In addition, MPI is
commonly used to implement some shared
memory models, such as Data Parallel, on
distributed memory architectures. All
parallelism is explicit in MPI. The
programmer is responsible for correctly
identifying parallelism and implementing
parallel algorithms using MPI constructs.
The number of tasks dedicated to run a
parallel program is static. New tasks can not
be dynamically spawned during run time.

Figure2: General MPI Program Structure[10]

Communicators and Groups: MPI uses
objects called communicators and groups to
define which collection of processes may
communicate with each other. Most MPI
routines require you to specify a
communicator as an argument.
MPI_COMM_WORLD is a predefined
communicator that includes all of the MPI
processes [10].

 Figure3: MPI_COMM_WORLD[10]

Within a communicator, every process has
its own unique, integer identifier assigned
by the system when the process initializes.
This unique integer is defined as Rank. It is
sometimes also called a "process ID". Ranks
are contiguous and begin at zero.

It is used to specify the source and
destination of messages, often used
conditionally by the application to control
program execution [10].

MPI environment management routines are
used for an assortment of purposes, such as
initializing and terminating the MPI
environment, querying the environment and
identity, etc. Some examples of MPI
environment routines are MPI_Init,
MPI_Comm_size etc.

There are routines for point to point
communication and collective
communication routines [10]. MPI point-to-
point operations typically involve message
passing between two, and only two, different
MPI tasks. One task is performing a send
operation and the other task is performing a
matching receive operation.

Collective communication must involve all
processes in the scope of a communicator.
All processes are by default, members in the
communicator MPI_COMM_WORLD [10].

It is the programmer's responsibility to
ensure that all processes within a
communicator participate in any collective
operations.

2.3 Titanium

Titanium developers describe it is an
explicitly parallel dialect of Java developed
at UC Berkeley to support high-performance
scientific computing on large-scale
multiprocessors, including massively
parallel supercomputers and distributed-
memory clusters with one or more
processors per node [11]. Other goals of
Titanium include [12]:

- Safety: It has two meanings in Titanium.
One is the ability to detect errors statically.
For instance, the Titanium compiler can
ensure that all processes will execute the
correct sequence of global synchronizations.

The other is the ability to detect and report
run-time errors, such as out-of-bound
indices, accurately. Both forms of safety
facilitate program development; but, not less
importantly, they enable more precise
analysis and more effective optimizations.

- Expressiveness: With built-in features
such as true multi-dimensional arrays and
iterators, points and index sets as first-class
values, and references that span processor
boundaries, Titanium is far more expressive
than most languages with comparable
performance.

Titanium is based on a parallel SPMD (for
Single Program, Multiple Data) model of
computation. It provides a global memory
space abstraction (similar to UPC) whereby
all data has a user-controllable processor
affinity, but parallel processes may directly
reference each other's memory to read and
write values or arrange for bulk data
transfers. A specific portability result is that
Titanium programs can run unmodified on
uniprocessors, shared memory machines and
distributed memory machines. Performance
tuning may be necessary to arrange an
application's data structures for distributed
memory, but the functional portability
allows for development on shared memory
machines and uniprocessors [11].

Titanium is essentially a superset of Java 1.4
and inherits all the expressiveness, usability
and safety properties of that language [12].
Titanium augments Java's safety features by
providing checked synchronization that
prevents a certain classes of synchronization
bugs. To support complex data structures, it
uses the object-oriented class mechanism of
Java along with the global address space to
allow for large shared structures.

Figure 4: The Star-P open software platform delivers revolutionary results to scientists, engineers and analysts by
enabling them to transparently use high performance computing resources, using familiar desktop tools [15].

2.4 Star-P

Choy et al, in their paper on STAR-P [14]
describe Star-P as an interactive parallel
scientific computing environment which
aims to make parallel programming more
accessible. Star-P borrows ideas from
Matlab*P, but is a new development.
Currently only a Matlab interface for Star-P
is available, but it is not limited to being a
parallel Matlab. It combines all four parallel
Matlab approaches in one environment:
embarrassingly parallel, message passing,
backend support and compilation. It also
integrates several parallel numerical libraries
into one single easy-to-use piece of software.
The focus of Star-P is to improve user
productivity in parallel programming. We
believe that Star-P can dramatically reduce
the difficulty of programming parallel
computers by reducing the time needed for
development and debugging.

To achieve productivity, it is important that
the user interface is intuitive to the user. For
example, a large class of scientific users are
already familiar with the Matlab language.
So it is beneficial to use Matlab as a parallel
programming language. Additions to the
language are minimal in keeping with the
philosophy to avoid re-learning. Also,
STAR-P does not distinguish between serial
data and parallel data.

C = op(A,B)
print(C)

C will be the same whether A and B are
distributed or not. This will allow the same
piece of code to run sequentially (when all
the arguments are serial) or in parallel (when
at least one of the arguments is distributed).

Leveraging both fine and coarse-grained
parallelization is necessary in the vast
majority of production-level HPC
applications [15]. Star-P enables users to
work in both a global format, and a
distributed format, and to interoperate
between the two.
Star-P’s fine-grained parallelization enables
algorithms requiring large-scale memory
access and inter-processor communication,
such as those found in matrix manipulation
and signal processing applications. Star-P’s
coarse-grained mode is ideally suited for
parallelization of algorithms often called
“embarrassingly parallel,” where
computations can be naturally broken up
into largely independent processes such as
Monte Carlo simulation, or parallelization of
FOR loops.

The Star-P interactive parallel computing
platform helps desktop tool vendors
leverage High performance computing
(HPC) without having to solve the
significant challenges associated with
parallel programming and supporting

multiple HPC platforms [15]. Star-P
eliminates user HPC programming and
delivers interactive performance by
automatically

- Sending computations to the HPC
- Splitting up the work across multiple
 Servers
- Providing access to world-class parallel
 computing libraries
- Managing inter-processor communication
- Managing the flow and memory storage of
 large data sets

3. Kth Single Selection Problem

The algorithm that we have implemented is
very closely modeled on Saukas et al[1].
The Kth selection problem is a problem of
determining the kth smallest element in an
unsorted distributed array of arbitrary length.
Consider a set X of n elements Given an
integer k, where 1≤ k ≤ n, the selection
problem is to obtain an element x of X such
that rank(x,X) = k†. When k=1 and k=n, we
have the special cases of determining the
minimum and maximum of X, respectively.
When k = n/2, we have the important case of
finding the median of X. The selection
problem can be solved by sequential
deterministic algorithm is linear time.

This algorithm is based on successive
partitioning of the input data to reduce the
total amount of input elements from O(n) to
O(n/p). These remaining elements can then
be processed sequentially in a single
processor in linear O(n/p) time.

The following partitioning strategy is used.
Choose an element M in set A with the
following property: n/4 ≤ rank(M,A) ≤
3n/4.Partition A into three subsets Al, Ae, Ag,

respectively with elements less than, equal
to and greater than M. We have | Al | ≤ 3n/4
and | Ag| ≤ 3n/4.

Fig. 5. Position of K relative to the sizes of Al, Ae, Ag

Based on the value of k relative to the sizes
of the three subsets Al, Ae, Ag, we either find
the kth element, or continue the selection
with a smaller subset. If k corresponds to the
first partition Al, then we continue the
selection using subset Al and discard the rest
(see Fig. 5); the new problem size will
therefore be reduced by at least 1/4. If k
corresponds to the middle partition Ae , then
we have found the answer: the kth element
is M . If k corresponds to the last partition
Ag, then we continue the selection using
subset Ag to select the element of rank k (Al
+ Ae); again the new problem size will be
reduced by at least 1/4.

Let ni be the number of remaining elements
in processor i at each round and N = ∑ 1 to p
ni . We consider mi as the median of the
remaining elements in processor i. The
weights wi are given by wi = ni / N.
Therefore using the weighted median we not
only consider the values of the medians in
each block, but also the amount of
remaining elements in each block. This will
allow the subsequent rounds to deal with
different number of elements in each
processor and nevertheless guarantees the
reduction by at least 1/4 of the total number
of remaining elements at each round.

The actual algorithm is as follows [1]:

3.1 Algorithm :

Single Selection Algorithm for obtaining the kth smallest element, assuming
p processors each with local memory of size O(n/p).

Input: Set A of n elements distributed among the p processors, each processor
i with n i = O(n/p) elements, and an integer k, 1 ≤ k ≤ n.

Output: An element a i of A such that rank (ai , A) = k.

(1) Set N: = n

(2) Repeat until N ≤ n / (cp)

(2.1) Each processor i computes the median mi of its ni elements
(2.2) Each processor i sends mi and ni to processor 1
(2.3) Processor 1 computes the weighted median M
(2.4) Processor 1 broadcasts M to all other processors
(2.5) Each processor i computes l i , e i , g i , respectively the numbers of its local elements less
than, equal to, or greater than M
(2.6) Each processor i sends li ≤ ei≤ gi to processor 1
(2.7) Processor 1 computes L = ∑ 1 to p 1i , E = ∑ 1 to p e i , G = ∑ 1 to p gi respectively the total
numbers of elements less than, equal to, or greater than M (2.8) Processor 1 broadcasts L; E; G
to all other processors
(2.9) One of the following:

if L < k ≤ L +E then return solution M and stop
if k ≤ L then each processor i discards all but those elements less than M and set N := L
if k > L + E then each processor i discards all but those elements greater than M and set
N := G and k := k - (L +E)

(3) All the remaining N elements are sent to processor 1

(4) Processor 1 solves the remaining problem sequentially

| End of Algorithm |

3.2 Weighted Median

Given p distinct elements m1, m2, m3…. mp
with corresponding positive weights
w1,w2,… wp such that ∑ 1 to p wi = 1 the
weighted median is the element m k that
satisfies [1]

4. Experimental Setup

Our experimental setup consists of a 8-way
Dual-Core AMD Opteron (tm) Processor
8214 making a total of 16 processesing units
and capable of simultaneously executing 16

parallel threads. The Operating System
running is x86-64 GNU/Linux and the
kernel version is 2.6.18-8.1.4.el5 with SMP
support enabled.

5. Language Evaluation Parameters

We adopt a multi-faceted approach in our
assessment of these parallel languages. In
particular, we look at the following
parameters of each of the languages and
analyze the languages based on our
experiences with them.
- Ease of installation and deployment
- Ease of understanding and availability of
 help
- Ease of creation of parallel data structures

- Ease of error detection and debugging

5.1 Ease of installation and deployment

The installation of UPC was pretty much
straightforward since the install file had
detailed explanation of the steps.
To keep the evaluations fair we wished to
link C++ standard template library (STL)
code to our UPC code. This required us to
use C++ with in the pure C nature of UPC.
We were able to achieve this by creating an
extern C function and linking the prototype
to both C and C++ compilation units and
using a special compiler directive
“ -link-with=g++”.

Here are excerpts from the code that achieve
this.

Figure 6 illustrates an example header file
which should be imported by both C and
C++ compiler

 #ifdef __cplusplus
 extern "C" {
 #endif
 int myFunc();
 #ifdef __cplusplus

}
 #endif

 Figure 6

Titanium- The installation was also smooth
albeit lengthy. There were more than one
components to be integrated which made the
task a little difficult. The absence of smooth
integration with an eclipse like IDE proves
to be an impediment for seasoned
programmers well versed with java
programming using eclipse or netbeans.
Furthermore the language varies
significantly from Java in that several new
syntactic constructs have been added which
requires a learning curve. We did manage,
with some amount of tweaking to be able to
run the eclipse IDE linking with the new
classes of Titanium.

The MPI and Star-P are already installed
and available on the experimental setup.

5.2 Ease of Understanding and
availability of help

The MPI programming model came
naturally to us and visualization of data
movement using message passing primitives
was very intuitive. Furthermore, clear crisp
and abundant documentation of MPI made
programming for MPI a breeze. The use of
high-level routines for data reorganization
among processors with efficient under-the-
hood implementation made MPI a lean mean
parallel machine. Also, smooth integration
with C++ enabled the use of STL without
the use of any tweaks and thus helped us to
use several state-of-the-art algorithmic
implementations and thus cut down the
application development time.

The UPC language, on the other hand, was
relatively hard to work with. The non-
availability of bucketed n to n data transfer
seemed to cut down the utility of UPC in
problems that require exactly this kind of
communication. Also, the official
documentation, in general, seems to be very
terse.

The primary help of Titanium came from
Language reference manual, which
describes the full syntax and semantics of
the Titanium language. This documentation
contained fewer code snippets and sample
programs than one would have liked. As far
as understanding, it was a breeze because it
came bundled with the familiarity and
comfort of Java.

Star-P clearly follows MATLAB in that the
availability of good help and documentation
is in abundance. However we got access to
these manuals from private machines, we
are unsure if they are available for general
public yet.
It took us significantly less time to develop a
working prototype in Star-P than any of the
other languages owing to good availability
of help and high level commands.

5.3 Ease of creation of parallel data
structures

We used upc_all_alloc primitive to create a
distributed dense array which is shared
across all threads and is compatible with the
following declaration.

shared [nbytes] char[nblocks*nbytes]

Here we were faced with the problem of
specifying the value of nbytes as a compile
time constant and therefore we couldn’t use
a runtime variable like THREADS (the
total number of threads used in the
application). This poses a problem when we
need to divide an array of arbitrary length
nearly equally among ‘n’ available
processors and have contiguous blocks of
n/nproc have affinity to each processor.

Finding the right distributed data structures
was the hardest thing we did in Titanium.
The divergence of array (grid) in Titanium
from Java as first class citizens, and the
various nuances of the new syntax made it
harder than necessary to create dynamic
distributed data structures.

Star-P was the most shining penny in the
fountain as far as creation of global data
structures was concerned. The abstraction
hid away the distribution of arrays and gave
a monolithic view to the programmer and
hence was very easy to deal with.

5.4 Ease of Error detection and
Debugging

In UPC due to the barrier synchronization
primitive and implicit receive at the barrier,

debugging seems to be not very convenient.
On the other hand explicit message passing
primitives of the MPI, make debugging
simpler at the expense of extra lines of code.
In both these languages the error output was
similar to the error output in regular C and
C++ programming and hence was relatively
easy to handle.

Titanium on the other hand displayed
compilation error messages very distinct
from Java and hence took some getting used
to.

Our experience with Star-P was that due to
its command line/ high level nature error
detection and debugging was some what
hard.

6. Performance Benchmarking

Scaled Speed-Up

0

10

20

30

40

50

60

4 8 16 32 64

Threads

T
im

e

MPI

UPC

Star-P

Figure 7: Scaled Speed-Up

 Scaled speedup means that you increase the
size of the problem at the same
rate that you increase the number of
processors, so the number of vector
elements per processor remains constant.

Varying PSIZE Constant THREADS=16

0

10

20

30

40

50

60

70

100000000 200000000 400000000 800000000 1.6E+09

PSIZE

T
im

e

UPC

MPI

Star-P

Figure 8: Varying PSIZE Constant THREADS

Figure 7 shows the scaled speed-up graph of
MPI, UPC and Star-P. As it is clear from the
graph, we see that the scaled speed up of the
three languages is almost comparable.

Figure 8 represents the performance under
increasing PSIZE and fixed number of

THREADS. We see that the time taken is
strictly linearly increasing as expected.

 UPC MPI Star-P Titanium

Ease of installation and
deployment

Good - - Average

Ease of Understanding and
availability of help

Average V.Good Good Average

Ease of creation of parallel
data structures Average - Easy Hard

Ease of error detection and
debugging Average Easy Average Hard

Figure 9: Evaluation of the 4 languages

7. Conclusion and Future Work

Figure 9 summarizes our experiences with
the four parallel programming languages. In
our opinion, but for the initial learning curve
we feel that Titanium has the potential of
becoming the de-facto standard for parallel
programming languages as it addresses
some of the real concerns of the community.
The familiarity of Java is a big plus for
Titanium. Performance wise we find that
Star-P,UPC and MPI are comparable and

Star-P has the lowest number of lines of
code.

As Future work it would be interesting to
study more facets of parallel languages. We
would also like to complete our Titanium
program and get the performance numbers
of it, so that we can compare it with the
other languages.

References:

[1] E.L.G. Saukas and S.W.Song, A note on
Parallel Selection on Coarse Grained
Multicomputer

[2] Ami Marowka, Analytic Comparison of
Two Advanced C Language-Based Parallel
Programming Models, Proceedings of the
ISPDC/HeteroPar’04, 2004 IEEE

[3] UPC: http://upc.lbl.gov/

[4] UPC: http://upc.gwu.edu/

[5] Sebastien Chauvin et al, UPC Manual,
George Washington University

[6] UPC: http://upc.lbl.gov/docs/user/

[7] Chen, Bonachea, Duell, Husbands,Iancu,
Yelick, A performance Analysis of the
Berkley UPC Compiler

[8]MPI: http://www.llnl.gov/computing/
tutorials/mpi

[9] MPI: http://www.mpi-forum.org/docs/
mpi-11-html/mpi-report.html

[10] MPI: http://www.mhpcc.edu/training/
workshop/mpi/MAIN.html

[11] Titanium Homepage: http://titanium.cs.
berkeley.edu/

[12] Kathy Yelick et al, Titanium: A High-
Performance Java Dialect, In Concurrency-
Practice and Experience, Java Special issue,
1998

[13] Katherine Yelick et al, Parallel
Languages and Compilers: Perspective from
the Titnaium experience, June 7, 2006

[14] Ron Choy, Alan Edelman, John R.
Gilbert, Viral Shah, David Cheng, Star-P:
High Productivity Parallel Computing

[15]STARP: http://www.interactivesuper

Computing.com/products/

[16] GASNet: http://gasnet.cs.berkeley.edu/

[17] Weighted Median: http://books.google.
com/books?id=NLngYyWFl_YC&pg=PA1
94&lpg=PA194&dq=cormen+weighted+me
dian&source=web&ots=BvVnID3jDe&sig=
9cSatCudd6gpydYH-0vLeAWqUQw

[18] Selection Algorithm:http://en.wikipedia
.org/wiki/Selection_algorithm

[19] UPC/C++: http://upc.lbl.gov/docs/user
/interoperability.html

Appendix

Mersenne Twister(MT) is a
pseudorandom number generating
algorithm developped by Makoto
Matsumoto and Takuji Nishimura
(alphabetical order) in 1996/1997. An
improvement on initialization was given
on 2002 Jan.
MT has the following merits:

• It is designed with consideration on
the flaws of various existing
generators.

• The algorithm is coded into a C-
source downloadable below.

• Far longer period and far higher
order of equidistribution than any
other implemented generators. (It is
proved that the period is 2^19937-1,
and 623-dimensional equidistribution
property is assured.)

• Efficient use of the memory. (The
implemented C-code mt19937.c
consumes only 624 words of
working area.)

