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Abstract 
 
In this paper we present an evaluation of 
four contemporary parallel languages: 
Unified Parallel C (UPC), Message Passing 
Interface (MPI), STAR-P and Titanium for 
the Kth selection problem[1]. UPC and MPI 
are programming languages based on  ANSI 
C standard whereas Titanium is based on 
Java and STAR-P is based on Matlab. 
 
We consider different parameters for 
evaluating these languages for the current 
problem ranging from ease of use to 
abstraction to performance. We deconstruct 
each parallel language into its basic 
components, show examples, make a 
detailed analysis, compare them, and finally 
draw some conclusions. 
 
We find MPI to be the most easy to use with 
the best documentation around and also to 
debug. The performance of MPI ,UPC and 
STAR-P are nearly comparable with some 
performing better under certain conditions. 
 
Categories and Subject Descriptors 
D.1.3 [Concurrent Programming]: Parallel 
programming 
D.3.3 [Language Constructs and Features]: 
Dynamic storage management 
 
General Terms 
Performance, Experimentation, Evaluation, 
Parallelism  
 
Keywords 
 
UPC, MPI, Star P, Titanium Kth Selection 
problem,  
 
 
 
 

1. Introduction 
 
With the advent of multi-core systems, the 
interest in parallelism and parallel languages 
is higher now than ever before. A plethora 
of parallel languages are out there and it 
could seem to be a daunting task for one to 
choose between these languages to solve 
parallel problems. We make a humble 
attempt to compare four popular 
contemporary parallel languages, namely, 
UPC, MPI, Star P and Titanium. These four 
languages vary widely in their programming 
models and memory abstraction.  
 
We start out with a problem that we consider 
as a representative of a typical problem that 
could exploit most of the abstractions of 
most of these above specified languages and 
can thus, keep our evaluation fair and 
reasonable. To achive this objective, we 
choose the Kth Selection Problem which is 
the core of the Parallel Sorting (PSort) 
algorithm. This PSort is in turn the core of 
many day-to-day parallel problems. 
 
We consider the following parameters to 
assess various facets of above specified 
parallel languages based on our experiences: 
 
- Ease of installation and deployment  
- Ease of understanding and availability of 
   help 
- Ease of creation of parallel data structures 
- Ease of error detection and debugging 
    
In chapter 2, we describe the parallel 
languages being considered. Chapter 3 
discusses the algorithm for the Single 
Selection problem. This is followed by a 
detailed experimental setup in the chapter 
4.Chapter 5 presents the various parameters 
used to compare the languages. Finally, we 
showcase the performance results and 



perform a comparative analysis of parallel 
languages being considered.     
 
2. Description of Parallel Languages 
 
Here we describe the four parallel languages 
being considered followed by some 
examples to illustrate their key features. 
 
2.1. Unified Parallel C 

As described by the Unified Parallel C 
(UPC) community[2], it is a parallel 
extension of the C programming language 
designed for high-performance computing 
on large-scale parallel machines, including 
those with a common global address space 
(SMP and NUMA) and those with 
distributed memory (e.g. clusters). There 
exists a single shared, partitioned address 
space, where variables may be directly read 
and written by any processor, but each 
variable is physically associated with a 
single processor. UPC uses a Single 
Program Multiple Data (SPMD) model of 
computation in which the amount of 
parallelism is fixed at program startup time, 
typically with a single thread of execution 
per processor. 

In this programming paradigm, every thread 
runs the same program but keeps its own 
private local data [4]. Each thread has a 
unique integer identity expressed as the 
MYTHREAD variable. The THREADS 
variable represents the total number of 
threads used by the application. These two 
variables are predefined identifiers. In 
addition to each thread’s private address 
space, UPC provides a shared memory area 
to facilitate communication among threads, 
and one can declare a shared object by 
specifying the shared type qualifier. While a 
private object may only be accessed by its 
owner thread, all threads can read or write to 
data in the shared address space. Because 
the shared memory space is logically 
divided among all threads, from a thread’s 
perspective the shared space can be further 
divided into a local shared memory and 

remote one. Data located in a thread’s local 
shared space are said to have affinity with 
the thread, and compilers can utilize this 
affinity information to exploit data locality 
in applications to reduce communication 
overhead. 
 
Pointers in UPC can be classified based on 
the locations of the pointers and of the 
objects to which they point [7]. Accesses to 
the private area behave identically to regular 
C pointer operations, while accesses to 
shared data are made through a special 
pointer-to-shared construct. The speed of 
local shared memory accesses will be lower 
than that of private accesses due to the extra 
overhead of determining affinity, and remote 
accesses in turn are typically significantly 
slower because of the network overhead. 
There are three different kinds of UPC 
pointers:  private pointers pointing to objects 
in the thread’s own private space, private 
pointers pointing to the shared address space, 
and pointers living in shared space that also 
point to shared objects. 
 
Data Distribution. UPC gives the user 
direct control over data placement through 
local memory allocation and distributed 
arrays [2]. When declaring a shared array, 
programmers can specify a block size in 
addition to the dimension and element type. 
The system uses this value to distribute the 
array elements block by block in a round- 
robin fashion over all threads. For example, 
a declaration of shared [4] int array[10] 
means that the compiler should allocate the 
first four elements of the array on thread 0, 
the next two on thread 1, and so on. 
If the block size is omitted the value defaults 
to one (cyclic layout), while a layout of [ ] 
or [0] indicates indefinite block size, i.e., 
that the entire array should be allocated on a 
single thread 
 
. 



 
 

Figure 1:  High level system diagram [16] 
 

Figure 1 shows the high-level system 
diagram for a UPC application compiled 
using the Berkeley UPC compiler [16]. This 
is the UPC compiler being used during the 
entire course of experimentation. The 
generated C code runs on top of the UPC 
runtime system, which provides platform 
independence and implements language-
specific features such as shared memory 
allocation and shared pointer manipulation. 
The runtime system implements remote 
operations by calling the GASNet 
communication interface, which provides 
hardware-independent lightweight, uniform 
networking primitives. 
 
2.2. MPI 
 
Message Passing Interface (MPI) [8] is a 
specification of message passing libraries. 
The goal of MPI is to provide a widely used 
standard for writing message passing 
programs. The interface attempts to be 
practical, portable, efficient and flexible. 
Interface specifications have been defined 
for C/C++ and Fortran programs. 

Programming Model: MPI lends itself to 
virtually any distributed memory parallel 
programming model. In addition, MPI is 
commonly used to implement some shared 
memory models, such as Data Parallel, on 
distributed memory architectures. All 
parallelism is explicit in MPI. The 
programmer is responsible for correctly 
identifying parallelism and implementing 
parallel algorithms using MPI constructs. 
The number of tasks dedicated to run a 
parallel program is static. New tasks can not 
be dynamically spawned during run time. 

 

Figure2: General MPI Program Structure[10] 

Communicators and Groups: MPI uses 
objects called communicators and groups to 
define which collection of processes may 
communicate with each other. Most MPI 
routines require you to specify a 
communicator as an argument. 
MPI_COMM_WORLD is a predefined 
communicator that includes all of the MPI 
processes [10].  

 Figure3: MPI_COMM_WORLD[10] 

Within a communicator, every process has 
its own unique, integer identifier assigned 
by the system when the process initializes. 
This unique integer is defined as Rank. It is 
sometimes also called a "process ID". Ranks 
are contiguous and begin at zero.  

It is used to specify the source and 
destination of messages, often used 
conditionally by the application to control 
program execution [10].  



MPI environment management routines are 
used for an assortment of purposes, such as 
initializing and terminating the MPI 
environment, querying the environment and 
identity, etc.  Some examples of MPI 
environment routines are MPI_Init, 
MPI_Comm_size etc. 
 
There are routines for point to point 
communication and collective 
communication routines [10]. MPI point-to-
point operations typically involve message 
passing between two, and only two, different 
MPI tasks. One task is performing a send 
operation and the other task is performing a 
matching receive operation. 

Collective communication must involve all 
processes in the scope of a communicator. 
All processes are by default, members in the 
communicator MPI_COMM_WORLD [10].  

It is the programmer's responsibility to 
ensure that all processes within a 
communicator participate in any collective 
operations. 
 
2.3 Titanium 
 
Titanium developers describe it is an 
explicitly parallel dialect of Java developed 
at UC Berkeley to support high-performance 
scientific computing on large-scale 
multiprocessors, including massively 
parallel supercomputers and distributed-
memory clusters with one or more 
processors per node [11]. Other goals of 
Titanium include [12]: 
 
- Safety: It has two meanings in Titanium. 
One is the ability to detect errors statically. 
For instance, the Titanium compiler can 
ensure that all processes will execute the 
correct sequence of global synchronizations. 

The other is the ability to detect and report 
run-time errors, such as out-of-bound 
indices, accurately. Both forms of safety 
facilitate program development; but, not less 
importantly, they enable more precise 
analysis and more effective optimizations. 
 
- Expressiveness: With built-in features 
such as true multi-dimensional arrays and 
iterators, points and index sets as first-class 
values, and references that span processor 
boundaries, Titanium is far more expressive 
than most languages with comparable 
performance. 
 
Titanium is based on a parallel SPMD (for 
Single Program, Multiple Data) model of 
computation. It provides a global memory 
space abstraction (similar to UPC) whereby 
all data has a user-controllable processor 
affinity, but parallel processes may directly 
reference each other's memory to read and 
write values or arrange for bulk data 
transfers. A specific portability result is that 
Titanium programs can run unmodified on 
uniprocessors, shared memory machines and 
distributed memory machines. Performance 
tuning may be necessary to arrange an 
application's data structures for distributed 
memory, but the functional portability 
allows for development on shared memory 
machines and uniprocessors [11].  

Titanium is essentially a superset of Java 1.4 
and inherits all the expressiveness, usability 
and safety properties of that language [12]. 
Titanium augments Java's safety features by 
providing checked synchronization that 
prevents a certain classes of synchronization 
bugs. To support complex data structures, it 
uses the object-oriented class mechanism of 
Java along with the global address space to 
allow for large shared structures.  



 

Figure 4: The Star-P open software platform delivers revolutionary results to scientists, engineers and analysts by 
enabling them to transparently use high performance computing resources, using familiar desktop tools [15].

2.4 Star-P 

Choy et al, in their paper on STAR-P [14] 
describe Star-P as an interactive parallel 
scientific computing environment which  
aims to make parallel programming more 
accessible. Star-P borrows ideas from 
Matlab*P, but is a new development. 
Currently only a Matlab interface for Star-P 
is available, but it is not limited to being a 
parallel Matlab. It combines all four parallel 
Matlab approaches in one environment: 
embarrassingly parallel, message passing, 
backend support and compilation. It also 
integrates several parallel numerical libraries 
into one single easy-to-use piece of software. 
The focus of Star-P is to improve user 
productivity in parallel programming. We 
believe that Star-P can dramatically reduce 
the difficulty of programming parallel 
computers by reducing the time needed for 
development and debugging. 
 
To achieve productivity, it is important that 
the user interface is intuitive to the user. For 
example, a large class of scientific users are 
already familiar with the Matlab language. 
So it is beneficial to use Matlab as a parallel 
programming language. Additions to the 
language are minimal in keeping with the 
philosophy to avoid re-learning. Also, 
STAR-P does not distinguish between serial 
data and parallel data. 
 

C = op(A,B) 
print(C) 
 
C will be the same whether A and B are 
distributed or not. This will allow the same 
piece of code to run sequentially (when all 
the arguments are serial) or in parallel (when 
at least one of the arguments is distributed). 
 
Leveraging both fine and coarse-grained 
parallelization is necessary in the vast 
majority of production-level HPC 
applications [15]. Star-P enables users to 
work in both a global format, and a 
distributed format, and to interoperate 
between the two. 
Star-P’s fine-grained parallelization enables 
algorithms requiring large-scale memory 
access and inter-processor communication, 
such as those found in matrix manipulation 
and signal processing applications. Star-P’s 
coarse-grained mode is ideally suited for 
parallelization of algorithms often called 
“embarrassingly parallel,” where 
computations can be naturally broken up 
into largely independent processes such as 
Monte Carlo simulation, or parallelization of 
FOR loops. 
 
The Star-P interactive parallel computing 
platform helps desktop tool vendors 
leverage High performance computing 
(HPC) without having to solve the 
significant challenges associated with 
parallel programming and supporting 



multiple HPC platforms [15]. Star-P 
eliminates user HPC programming and 
delivers interactive performance by 
automatically 
 
- Sending computations to the HPC 
- Splitting up the work across multiple  
  Servers 
- Providing access to world-class parallel  
  computing libraries 
- Managing inter-processor communication 
- Managing the flow and memory storage of 
  large data sets 
 
3. Kth Single Selection Problem 
 
The algorithm that we have implemented is 
very closely modeled on Saukas et al[1]. 
The Kth selection problem is a problem of 
determining the kth smallest element in an 
unsorted distributed array of arbitrary length. 
Consider a set X of n elements Given an 
integer k, where 1≤ k ≤ n, the selection 
problem is to obtain an element x of X such 
that rank(x,X) = k†. When k=1 and k=n, we 
have the special cases of determining the 
minimum and maximum of X, respectively. 
When k = n/2, we have the important case of 
finding the median of X. The selection 
problem can be solved by sequential 
deterministic algorithm is linear time. 
 
This algorithm is based on successive 
partitioning of the input data to reduce the 
total amount of input elements from O(n) to 
O(n/p). These remaining elements can then 
be processed sequentially in a single 
processor in linear O(n/p) time. 
 
The following partitioning strategy is used. 
Choose an element M in set A with the 
following property: n/4 ≤ rank(M,A) ≤ 
3n/4.Partition A into three subsets Al, Ae, Ag,  

respectively with elements less than, equal 
to and greater than M. We have | Al | ≤ 3n/4 
and | Ag| ≤ 3n/4.  
 

 
 
Fig. 5. Position of K relative to the sizes of Al, Ae, Ag 
 
 
Based on the value of k relative to the sizes 
of the three subsets Al, Ae, Ag, we either find 
the kth element, or continue the selection 
with a smaller subset. If k corresponds to the 
first partition Al, then we continue the 
selection using subset Al and discard the rest 
(see Fig. 5); the new problem size will 
therefore be reduced by at least 1/4. If k 
corresponds to the middle partition Ae , then 
we have found the answer: the kth element 
is M . If k corresponds to the last partition 
Ag, then we continue the selection using 
subset Ag to select the element of rank k (Al 
+ Ae); again the new problem size will be 
reduced by at least 1/4.  
 
Let ni be the number of remaining elements 
in processor i at each round and N = ∑ 1 to p 
ni . We consider mi as the median of the 
remaining elements in processor i. The 
weights wi are given by wi = ni / N. 
Therefore using the weighted median we not 
only consider the values of the medians in 
each block, but also the amount of 
remaining elements in each block. This will 
allow the subsequent rounds to deal with 
different number of elements in each 
processor and nevertheless guarantees the 
reduction by at least 1/4 of the total number 
of remaining elements at each round. 
 
The actual algorithm is as follows [1]: 



3.1 Algorithm :  
 
Single Selection Algorithm for obtaining the kth smallest element, assuming  
p processors each with local memory of size O(n/p).  
 
Input: Set A of n elements distributed among the p processors, each processor  
i with n i = O(n/p) elements, and an integer k, 1 ≤  k ≤  n.  
 
Output: An element a i of A such that rank (ai , A) = k.  
 
(1) Set N: = n  
 
(2) Repeat until N ≤ n / (cp)  

(2.1) Each processor i computes the median mi of its ni elements  
(2.2) Each processor i sends mi and ni to processor 1  
(2.3) Processor 1 computes the weighted median M  
(2.4) Processor 1 broadcasts M to all other processors  
(2.5) Each processor i computes l i , e i , g i , respectively the numbers of its local elements less 
than, equal to, or greater than M  
(2.6) Each processor i sends li  ≤  ei≤ gi to processor 1  
(2.7) Processor 1 computes L = ∑ 1 to p 1i , E = ∑ 1 to p e i , G = ∑ 1 to p gi  respectively the total 
numbers of elements less than, equal to, or greater than M (2.8) Processor 1 broadcasts L; E; G 
to all other processors  
(2.9) One of the following:  

if L < k ≤ L +E then return solution M and stop  
if k  ≤  L then each processor i discards all but those elements less than M and set N := L  
if k > L + E then each processor i discards all but those elements greater than M and set 
N := G and k := k - (L +E)  
 

(3) All the remaining N elements are sent to processor 1  
 
(4) Processor 1 solves the remaining problem sequentially  
 
| End of Algorithm | 
 
 
3.2 Weighted Median 
 
Given p distinct elements m1, m2, m3…. mp 
with corresponding positive weights 
w1,w2,… wp such that  ∑ 1 to p wi = 1 the  
weighted median is the element m k that 
satisfies  [1] 
 

 
 
4. Experimental Setup 
 
Our experimental setup consists of a 8-way 
Dual-Core AMD Opteron (tm) Processor 
8214 making a total of 16 processesing units 
and capable of simultaneously executing 16 

parallel threads. The Operating System 
running is x86-64 GNU/Linux and the 
kernel version is 2.6.18-8.1.4.el5 with SMP 
support enabled.  
 
5. Language Evaluation Parameters 
 
We adopt a multi-faceted approach in our 
assessment of these parallel languages. In 
particular, we look at the following 
parameters of each of the languages and 
analyze the languages based on our 
experiences with them.  
- Ease of installation and deployment  
- Ease of understanding and availability of 
  help 
- Ease of creation of parallel data structures 



- Ease of error detection and debugging 
 
5.1 Ease of installation and deployment 
 
The installation of UPC was pretty much 
straightforward since the install file had 
detailed explanation of the steps. 
To keep the evaluations fair we wished to 
link C++ standard template library (STL) 
code to our UPC code. This required us to 
use C++ with in the pure C nature of UPC. 
We were able to achieve this by creating an 
extern C function and linking the prototype 
to both C and C++ compilation units and 
using a special compiler directive 
“ -link-with=g++”. 
 
Here are excerpts from the code that achieve 
this. 
 
Figure 6 illustrates an example header file 
which should be imported by both C and 
C++ compiler  
 

 
     #ifdef __cplusplus 
           extern "C" { 
     #endif 
            int myFunc(); 
     #ifdef __cplusplus 

} 
      #endif 
 

 
 Figure 6  
 
Titanium- The installation was also smooth 
albeit lengthy. There were more than one 
components to be integrated which made the 
task a little difficult. The absence of smooth 
integration with an eclipse like IDE proves 
to be an impediment for seasoned 
programmers well versed with java 
programming using eclipse or netbeans. 
Furthermore the language varies 
significantly from Java in that several new 
syntactic constructs have been added which 
requires a learning curve. We did manage, 
with some amount of tweaking to be able to 
run the eclipse IDE linking with the new 
classes of Titanium. 

The MPI and Star-P are already installed 
and available on the experimental setup. 
 
5.2 Ease of Understanding and 
availability of help 
 
The MPI programming model came 
naturally to us and visualization of data 
movement using message passing primitives 
was very intuitive. Furthermore, clear crisp 
and abundant documentation of MPI made 
programming for MPI a breeze. The use of 
high-level routines for data reorganization 
among processors with efficient under-the-
hood implementation made MPI a lean mean 
parallel machine. Also, smooth integration 
with C++ enabled the use of STL without 
the use of any tweaks and thus helped us to 
use several state-of-the-art algorithmic 
implementations and thus cut down the 
application development time.  
 
The UPC language, on the other hand, was 
relatively hard to work with. The non-
availability of bucketed n to n data transfer 
seemed to cut down the utility of UPC in 
problems that require exactly this kind of 
communication. Also, the official 
documentation, in general, seems to be very 
terse.  
 
The primary help of Titanium came from 
Language reference manual, which 
describes the full syntax and semantics of 
the Titanium language. This documentation 
contained fewer code snippets and sample 
programs than one would have liked. As far 
as understanding, it was a breeze because it 
came bundled with the familiarity and 
comfort of Java. 
 
Star-P clearly follows MATLAB in that the 
availability of good help and documentation 
is in abundance. However we got access to 
these manuals from private machines, we 
are unsure if they are available for general 
public yet. 
It took us significantly less time to develop a 
working prototype in Star-P than any of the 
other languages owing to good availability 
of help and high level commands. 



   
5.3 Ease of creation of parallel data 
structures 
 
We used upc_all_alloc primitive to create a 
distributed dense array which is shared 
across all threads and is compatible with the 
following declaration. 
  
shared [nbytes] char[nblocks*nbytes] 
 
Here we were faced with the problem of 
specifying the value of nbytes as a compile 
time constant and therefore we couldn’t use 
a  runtime variable like THREADS ( the 
total number of threads used in the 
application). This poses a problem when we 
need to divide an array of arbitrary length 
nearly equally among ‘n’ available 
processors and have contiguous blocks of 
n/nproc have affinity to each processor. 
 
Finding the right distributed data structures 
was the hardest thing we did in Titanium. 
The divergence of array (grid) in Titanium 
from Java as first class citizens, and the 
various nuances of the new syntax made it 
harder than necessary to create dynamic 
distributed data structures. 
 
Star-P was the most shining penny in the 
fountain as far as creation of global data 
structures was concerned. The abstraction 
hid away the distribution of arrays and gave 
a monolithic view to the programmer and 
hence was very easy to deal with. 
 
5.4  Ease of Error detection and 
Debugging 
 
In UPC due to the barrier synchronization 
primitive and implicit receive at the barrier, 

debugging seems to be not very convenient. 
On the other hand explicit message passing 
primitives of the MPI, make debugging 
simpler at the expense of extra lines of code. 
In both these languages the error output was 
similar to the error output in regular C and 
C++ programming and hence was relatively 
easy to handle. 
 
Titanium on the other hand displayed 
compilation error messages very distinct 
from Java and hence took some getting used 
to. 
 
Our experience with Star-P was that due to 
its command line/ high level nature error 
detection and debugging was some what 
hard. 
 
6. Performance Benchmarking 
 

Scaled Speed-Up

0

10

20

30

40

50

60

4 8 16 32 64

Threads 

T
im

e

MPI

UPC

Star-P

 
Figure 7: Scaled Speed-Up 

 
 
 Scaled speedup means that you increase the 
size of the problem at the same 
rate that you increase the number of 
processors, so the number of vector 
elements per processor remains constant.



Varying PSIZE Constant THREADS=16
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Figure 8:  Varying PSIZE Constant THREADS 
 

Figure 7 shows the scaled speed-up graph of 
MPI, UPC and Star-P. As it is clear from the 
graph, we see that the scaled speed up of the 
three languages is almost comparable. 
    
Figure 8 represents the performance under 
increasing PSIZE and fixed number of 

THREADS. We see that the time taken is 
strictly linearly increasing as expected. 
 
 
 
 
 
 

 UPC MPI Star-P Titanium 

Ease of installation and 
deployment 

Good - - Average 

Ease of Understanding and 
availability of help 

Average V.Good Good Average 

Ease of creation of parallel 
data structures Average - Easy Hard 

Ease of error detection and 
debugging Average Easy Average Hard 

 
Figure 9: Evaluation of the 4 languages 

 

7. Conclusion and Future Work 
 
Figure 9 summarizes our experiences with 
the four parallel programming languages. In 
our opinion, but for the initial learning curve 
we feel that Titanium has the potential of 
becoming the de-facto standard for parallel 
programming languages as it addresses 
some of the real concerns of the community. 
The familiarity of Java is a big plus for 
Titanium. Performance wise we find that 
Star-P,UPC and MPI are comparable and 

Star-P has the lowest number of lines of 
code. 
 
As Future work it would be interesting to 
study more facets of parallel languages. We 
would also like to complete our Titanium 
program and get the performance numbers 
of it, so that we can compare it with the 
other languages.  
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Appendix  

Mersenne Twister(MT) is a 
pseudorandom number generating 
algorithm developped by Makoto 
Matsumoto and Takuji Nishimura 
(alphabetical order) in 1996/1997. An 
improvement on initialization was given 
on 2002 Jan.  
MT has the following merits:  

• It is designed with consideration on 
the flaws of various existing 
generators.  

• The algorithm is coded into a C-
source downloadable below.  

• Far longer period and far higher 
order of equidistribution than any 
other implemented generators. (It is 
proved that the period is 2^19937-1, 
and 623-dimensional equidistribution 
property is assured.)  

• Efficient use of the memory. (The 
implemented C-code mt19937.c 
consumes only 624 words of 
working area.)  

 
 
 

 


