Outline

* Overview

* Testing and performance results

* Detailed description of block subsystem



Overview of Filesystem




Overview

* We implemented an inode file system very
similar to UNIX system V presented in Bach

~ Block management layer abstracts away block
servers and volatile storage

~ Inode and system call interface are unchanged
except for error handling

* Buffer cache and asynchronous write and free
operations provide performance boosts



Block Functionality

* Allocate persistent or volatile blocks
* Load, release, and free allocated blocks

* Represents volatile blocks as persistent using a
thread to refresh 10 seconds before timeout

* Writes and frees are performed asynchronously
by another thread for performance increase

* Cache of most recently used blocks prevents a
read operation on many get requests



Inode Functionality

* Allocates, loads, releases, and frees inodes

* Provides abstract read/write operations that
handle direct and indirect data blocks

* Provides location and path traversal capabilities

* Stores multiple inodes per block



Inode Structure

* Common inode fields: owner, group,

permissions, access times, link counts, data
addresses

* Max file size ~4GB: 9 direct, 1 single indirect and
1 double indirect data pointers

* Inodes identified by a unique triplet: server
address, block id, and offset into block



Performance Results




Initial Test Scripts

* Ran all test cases successfully except 10 (which
timed out during final testing)

* Notably good performance on 6 due to cache
performance improvements on path lookup



Time (minutes)

14

12

10

Cache Benchmarking

N

128 256 384 512
Cache Size (KB)

Benchmark Code

fori=11t08
mkdir “$i”
forj=1t0 8
mkdir “$/$j”
end
end

find .

rm -rf *




Final Demo Results

* Successful test cases: 1,2,3,4,5,8,9,10
* Failed test cases: 6, 7 (path parsing problem)

* Test 9 ran to completion twice due to
performance improvement of cache



Detailed Description of Block Subsystem
caching, asynchronous
operations, and refreshing




Block Subsystem: Data Structures

Block
Record

. * Stores an entry for every allocated
server, id
block on the servers

_D_D_D_D_D * Sorted by the server, id tuple

Refresh

_ * Stores an entry for every allocated
timeout block on the volatile servers

_D_D_D_D_D * Sorted by the timeout on the block

Update

update time * Keeps an LRU list of the blocks that

—D—D—D—D—D need asynchronous writes or frees

Free

release time * Keeps an LRU list of the blocks that

—D—D—D—D—D are not required to be in core

* Size limited by the total number of
blocks in core



Block Subsystem: balloc()

Block server, id records for all
blocks
T U U Y o A
to a refresh list
update time

release time

“HHHHHT]




Block Subsystem: bfree()
-_._.Sfﬁf._. * Removes the record
of a block as well as
imeout the refresh and free
-—.—.—.—“ list If necessary

update time * items to the

— HTHTHEHTHT  update list to be freed

- asynchronously
release time




Block Subsystem: bget()

Block server, id * Removes entries from

ecod ] H H H H | the free list if there is

fimeout no space in the cache

CTHHHHH

update time

THHHHH

. release time




Block Subsystem: brelease()

Block server, id . entries to the
update list if they are
timeout dlrty
° or
update time items in the free list to
Update
-D—D—D—D—D reflect new release
time
release time




Block Subsystem: update thread

Block server, id * Sleeps until items are

= _D_D_D_D_D added to Update List

timeout * Removes entries from

Refresh
THHHHT he update list after

. update time processing
* Removes entries from
release time the free list if cache
-‘.‘.‘.‘“ Size exceeded




Block Subsystem: refresh thread

Block server, id * Sleeps until items are

pecod | H H H H | added to Refresh List,

fimeout or items are about to
expire

update time * Updates entries in the

Update .
H H H H H ] refreshlist after

processing

release time

“HHHHHT]




